3.14 \(\int \frac {(a+a \cot (c+d x))^2}{(e \cot (c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=249 \[ -\frac {a^2 \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{\sqrt {2} d e^{7/2}}+\frac {a^2 \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{\sqrt {2} d e^{7/2}}-\frac {\sqrt {2} a^2 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{d e^{7/2}}+\frac {\sqrt {2} a^2 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{d e^{7/2}}+\frac {4 a^2}{3 d e^2 (e \cot (c+d x))^{3/2}}+\frac {2 a^2}{5 d e (e \cot (c+d x))^{5/2}} \]

[Out]

2/5*a^2/d/e/(e*cot(d*x+c))^(5/2)+4/3*a^2/d/e^2/(e*cot(d*x+c))^(3/2)-1/2*a^2*ln(e^(1/2)+cot(d*x+c)*e^(1/2)-2^(1
/2)*(e*cot(d*x+c))^(1/2))/d/e^(7/2)*2^(1/2)+1/2*a^2*ln(e^(1/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2)
)/d/e^(7/2)*2^(1/2)-a^2*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))*2^(1/2)/d/e^(7/2)+a^2*arctan(1+2^(1/2)*
(e*cot(d*x+c))^(1/2)/e^(1/2))*2^(1/2)/d/e^(7/2)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 249, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 11, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3542, 12, 3474, 3476, 329, 211, 1165, 628, 1162, 617, 204} \[ \frac {4 a^2}{3 d e^2 (e \cot (c+d x))^{3/2}}-\frac {a^2 \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{\sqrt {2} d e^{7/2}}+\frac {a^2 \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{\sqrt {2} d e^{7/2}}-\frac {\sqrt {2} a^2 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{d e^{7/2}}+\frac {\sqrt {2} a^2 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{d e^{7/2}}+\frac {2 a^2}{5 d e (e \cot (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cot[c + d*x])^2/(e*Cot[c + d*x])^(7/2),x]

[Out]

-((Sqrt[2]*a^2*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(d*e^(7/2))) + (Sqrt[2]*a^2*ArcTan[1 + (Sqr
t[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(d*e^(7/2)) + (2*a^2)/(5*d*e*(e*Cot[c + d*x])^(5/2)) + (4*a^2)/(3*d*e^2*(
e*Cot[c + d*x])^(3/2)) - (a^2*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(Sqrt[2]*d*e
^(7/2)) + (a^2*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(Sqrt[2]*d*e^(7/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3474

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)), x] - Dist[
1/b^2, Int[(b*Tan[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 3542

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
((b*c - a*d)^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Ta
n[e + f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Tan[e + f*x], x], x], x] /; FreeQ
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {(a+a \cot (c+d x))^2}{(e \cot (c+d x))^{7/2}} \, dx &=\frac {2 a^2}{5 d e (e \cot (c+d x))^{5/2}}+\frac {\int \frac {2 a^2 e}{(e \cot (c+d x))^{5/2}} \, dx}{e^2}\\ &=\frac {2 a^2}{5 d e (e \cot (c+d x))^{5/2}}+\frac {\left (2 a^2\right ) \int \frac {1}{(e \cot (c+d x))^{5/2}} \, dx}{e}\\ &=\frac {2 a^2}{5 d e (e \cot (c+d x))^{5/2}}+\frac {4 a^2}{3 d e^2 (e \cot (c+d x))^{3/2}}-\frac {\left (2 a^2\right ) \int \frac {1}{\sqrt {e \cot (c+d x)}} \, dx}{e^3}\\ &=\frac {2 a^2}{5 d e (e \cot (c+d x))^{5/2}}+\frac {4 a^2}{3 d e^2 (e \cot (c+d x))^{3/2}}+\frac {\left (2 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \left (e^2+x^2\right )} \, dx,x,e \cot (c+d x)\right )}{d e^2}\\ &=\frac {2 a^2}{5 d e (e \cot (c+d x))^{5/2}}+\frac {4 a^2}{3 d e^2 (e \cot (c+d x))^{3/2}}+\frac {\left (4 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d e^2}\\ &=\frac {2 a^2}{5 d e (e \cot (c+d x))^{5/2}}+\frac {4 a^2}{3 d e^2 (e \cot (c+d x))^{3/2}}+\frac {\left (2 a^2\right ) \operatorname {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d e^3}+\frac {\left (2 a^2\right ) \operatorname {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d e^3}\\ &=\frac {2 a^2}{5 d e (e \cot (c+d x))^{5/2}}+\frac {4 a^2}{3 d e^2 (e \cot (c+d x))^{3/2}}-\frac {a^2 \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\sqrt {2} d e^{7/2}}-\frac {a^2 \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\sqrt {2} d e^{7/2}}+\frac {a^2 \operatorname {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d e^3}+\frac {a^2 \operatorname {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d e^3}\\ &=\frac {2 a^2}{5 d e (e \cot (c+d x))^{5/2}}+\frac {4 a^2}{3 d e^2 (e \cot (c+d x))^{3/2}}-\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\sqrt {2} d e^{7/2}}+\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\sqrt {2} d e^{7/2}}+\frac {\left (\sqrt {2} a^2\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{d e^{7/2}}-\frac {\left (\sqrt {2} a^2\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{d e^{7/2}}\\ &=-\frac {\sqrt {2} a^2 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{d e^{7/2}}+\frac {\sqrt {2} a^2 \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{d e^{7/2}}+\frac {2 a^2}{5 d e (e \cot (c+d x))^{5/2}}+\frac {4 a^2}{3 d e^2 (e \cot (c+d x))^{3/2}}-\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\sqrt {2} d e^{7/2}}+\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\sqrt {2} d e^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.41, size = 141, normalized size = 0.57 \[ \frac {2 a^2 \sin (c+d x) (\tan (c+d x)+1)^2 \left (10 \cos (c+d x) \, _2F_1\left (-\frac {3}{4},1;\frac {1}{4};-\cot ^2(c+d x)\right )+15 \cos (c+d x) \cot (c+d x) \, _2F_1\left (-\frac {1}{4},1;\frac {3}{4};-\cot ^2(c+d x)\right )+3 \sin (c+d x) \, _2F_1\left (-\frac {5}{4},1;-\frac {1}{4};-\cot ^2(c+d x)\right )\right )}{15 d e^3 \sqrt {e \cot (c+d x)} (\sin (c+d x)+\cos (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cot[c + d*x])^2/(e*Cot[c + d*x])^(7/2),x]

[Out]

(2*a^2*Sin[c + d*x]*(10*Cos[c + d*x]*Hypergeometric2F1[-3/4, 1, 1/4, -Cot[c + d*x]^2] + 15*Cos[c + d*x]*Cot[c
+ d*x]*Hypergeometric2F1[-1/4, 1, 3/4, -Cot[c + d*x]^2] + 3*Hypergeometric2F1[-5/4, 1, -1/4, -Cot[c + d*x]^2]*
Sin[c + d*x])*(1 + Tan[c + d*x])^2)/(15*d*e^3*Sqrt[e*Cot[c + d*x]]*(Cos[c + d*x] + Sin[c + d*x])^2)

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cot(d*x+c))^2/(e*cot(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   catdef: division by zero

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \cot \left (d x + c\right ) + a\right )}^{2}}{\left (e \cot \left (d x + c\right )\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cot(d*x+c))^2/(e*cot(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((a*cot(d*x + c) + a)^2/(e*cot(d*x + c))^(7/2), x)

________________________________________________________________________________________

maple [A]  time = 0.46, size = 216, normalized size = 0.87 \[ \frac {a^{2} \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )}{2 d \,e^{4}}+\frac {a^{2} \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{d \,e^{4}}-\frac {a^{2} \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{d \,e^{4}}+\frac {2 a^{2}}{5 d e \left (e \cot \left (d x +c \right )\right )^{\frac {5}{2}}}+\frac {4 a^{2}}{3 d \,e^{2} \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cot(d*x+c)*a)^2/(e*cot(d*x+c))^(7/2),x)

[Out]

1/2/d*a^2/e^4*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*co
t(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+1/d*a^2/e^4*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)
/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/d*a^2/e^4*(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c)
)^(1/2)+1)+2/5*a^2/d/e/(e*cot(d*x+c))^(5/2)+4/3*a^2/d/e^2/(e*cot(d*x+c))^(3/2)

________________________________________________________________________________________

maxima [A]  time = 0.69, size = 221, normalized size = 0.89 \[ \frac {e {\left (\frac {15 \, {\left (\frac {2 \, \sqrt {2} a^{2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {e} + 2 \, \sqrt {\frac {e}{\tan \left (d x + c\right )}}\right )}}{2 \, \sqrt {e}}\right )}{e^{\frac {3}{2}}} + \frac {2 \, \sqrt {2} a^{2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {e} - 2 \, \sqrt {\frac {e}{\tan \left (d x + c\right )}}\right )}}{2 \, \sqrt {e}}\right )}{e^{\frac {3}{2}}} + \frac {\sqrt {2} a^{2} \log \left (\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{e^{\frac {3}{2}}} - \frac {\sqrt {2} a^{2} \log \left (-\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{e^{\frac {3}{2}}}\right )}}{e^{3}} + \frac {4 \, {\left (3 \, a^{2} e + \frac {10 \, a^{2} e}{\tan \left (d x + c\right )}\right )}}{e^{3} \left (\frac {e}{\tan \left (d x + c\right )}\right )^{\frac {5}{2}}}\right )}}{30 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cot(d*x+c))^2/(e*cot(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

1/30*e*(15*(2*sqrt(2)*a^2*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(e) + 2*sqrt(e/tan(d*x + c)))/sqrt(e))/e^(3/2) + 2*s
qrt(2)*a^2*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(e) - 2*sqrt(e/tan(d*x + c)))/sqrt(e))/e^(3/2) + sqrt(2)*a^2*log(s
qrt(2)*sqrt(e)*sqrt(e/tan(d*x + c)) + e + e/tan(d*x + c))/e^(3/2) - sqrt(2)*a^2*log(-sqrt(2)*sqrt(e)*sqrt(e/ta
n(d*x + c)) + e + e/tan(d*x + c))/e^(3/2))/e^3 + 4*(3*a^2*e + 10*a^2*e/tan(d*x + c))/(e^3*(e/tan(d*x + c))^(5/
2)))/d

________________________________________________________________________________________

mupad [B]  time = 1.29, size = 99, normalized size = 0.40 \[ \frac {\frac {4\,a^2\,\mathrm {cot}\left (c+d\,x\right )}{3}+\frac {2\,a^2}{5}}{d\,e\,{\left (e\,\mathrm {cot}\left (c+d\,x\right )\right )}^{5/2}}-\frac {{\left (-1\right )}^{1/4}\,a^2\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,2{}\mathrm {i}}{d\,e^{7/2}}-\frac {{\left (-1\right )}^{1/4}\,a^2\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,2{}\mathrm {i}}{d\,e^{7/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*cot(c + d*x))^2/(e*cot(c + d*x))^(7/2),x)

[Out]

((4*a^2*cot(c + d*x))/3 + (2*a^2)/5)/(d*e*(e*cot(c + d*x))^(5/2)) - ((-1)^(1/4)*a^2*atan(((-1)^(1/4)*(e*cot(c
+ d*x))^(1/2))/e^(1/2))*2i)/(d*e^(7/2)) - ((-1)^(1/4)*a^2*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*2
i)/(d*e^(7/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a^{2} \left (\int \frac {1}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {7}{2}}}\, dx + \int \frac {2 \cot {\left (c + d x \right )}}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {7}{2}}}\, dx + \int \frac {\cot ^{2}{\left (c + d x \right )}}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {7}{2}}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cot(d*x+c))**2/(e*cot(d*x+c))**(7/2),x)

[Out]

a**2*(Integral((e*cot(c + d*x))**(-7/2), x) + Integral(2*cot(c + d*x)/(e*cot(c + d*x))**(7/2), x) + Integral(c
ot(c + d*x)**2/(e*cot(c + d*x))**(7/2), x))

________________________________________________________________________________________